纺织纤维有哪些性质(纺织纤维具有哪些性质)

发布时间:2023-04-13 分类:纺织设计灵感

今天给各位分享纺织纤维有哪些性质的知识,其中也会对纺织纤维具有哪些性质进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

纤维的力学性质

       纺织纤维在纺织加工和纺织品的使用过程中,会受到各种外力的作用,要求纺织纤维具有一定的抵抗外力作用的能力。纤维的强度也是纤维制品其他物理性能得以充分发挥的必要基础,因此,纤维的力学性质是最主要的性质,它具有重要的技术意义和实际意义。

纤维的拉伸性质

       纺织纤维的长度比直径大1000倍以上,这种细长的柔性物体,轴向拉伸是受力的主要形式,其中,纤维的强伸性质是衡量其力学性能的重要指标。

       当较小的外力作用于纤维时,纤维产生的伸长是由于分子链本身的伸长和无定形区中缚结分子链伸展时,分子链间横向次价键产生变形的结果。变形的大小正比于外力的大小,即应力-应变关系是线性的(虎克区)。当外力除去,纤维的分子链和横向连接键将回复到原来位置,是完全弹性回复。

       当施加的外力增大时,无定形区中有些横向连接键因受到较枝雀大的变形,不能承受施加于它们的力而发生键的断裂。这样,允许卷曲分子链伸直,接着分子链之间进行应力再分配,使其他的横向连接键受力增加而断裂,分子链进一步伸展。在这一阶段,纤维伸长变得较容易,而应力上升很缓慢,应力-应变曲线具有较小的斜率(屈服区)。当外力除去后,变形的回复是不完全的。因为许多横向连接键已经断裂不能回到原来的位置,或者在新的位置上已经重新形成新的横向次价键变成较稳定的结构状态。

       当进一步增加外力时,由于纤维上许多大分子链经过屈服流动后,分子链因充分伸直,进一步拉伸分子链比较困难。这时,拉伸曲线斜率增加(强化区),这时增加的变形主要是纤维大分子链键长和键角的改变所引起,最后直至纤维断裂。

       不同纺织纤维由于内部结构不同,其拉伸曲线有很大差异。天然纤维因品种不同,或生长、饲养条件的差异,化学纤维则由于大分子链结构以及纺丝工艺参数的差别,其拉伸性能也会有很大的差别。 根据纤维拉伸曲线可提取表征纤维拉伸性能的许多重要力学性能指标。

       1、断裂强力和断裂强度:纤维断裂强薯码力表示纤维能承受拉伸负荷的最大能力,单位为牛顿 (N),或厘牛 (cN)。单根纤维的断裂强力称绝对强力,它与纤维粗细有关,为了相互比较,通常采用断裂强度(或相对强度)来表征。

       2、断裂伸长率:纤维拉伸断裂时产生的伸长占原来长度的百分率。它表示纤维承受最大负荷时的伸长变形能力。

       3、初始模量:它是纤维应力-应变曲线起始一段直线部分的斜率,其物理含义是表示当试样保持初始斜率不变时,拉伸试样至原来长度的两倍时所需的应力值。它表征在小变形条件下,纤维承受外力作用时抵抗变形能力的大小,是衡量纤维刚性的指标。 纺织纤维的初始模量与纺织制品的耐磨、耐疲劳、耐冲击、手感、悬垂性和起拱性能等关系密切。许多纺织品多半是在小变形条件下工作的,因此,初始模量是纤维力学性能中的重要指标。

       4、屈服点:纤维拉伸曲线上“虎克区”和屈服区的转变点称为屈服点,所对应的应力和应变分别称为屈服应力和屈服应变。实验表明当纤维超过屈服点后,将产生较高比例的塑性变形,纤维的力学性质将起较大的变化,所以在纺织加工和纺织品使用过程中,确定和掌握纤维的屈服点很猛手早重要

       5、断裂功、断裂比功:纤维的负荷-伸长曲线下的面积,表示拉断这根纤维时,外力对它所作的功,表示材料抵抗外力破坏所具有的能量,叫做“断裂功”(W)。在纤维粗细和试样长度不同时,断裂功不能反映纤维抵抗外力破坏的能力,所以要折算成拉断单位体积或单位纤维重量所需作功的大小,称为“断裂比功”,断裂比功大的纤维材料能承受冲击破坏的能力强。

       影响纤维拉伸性质的因素主要有纤维的内部结构和外部试验条件。

       1、分子的取向度:取向度高,有较多的大分子排列在平行于纤维轴的方向上,因而可以有较多的大分子来承担较大的断裂应力,因此断裂强力高。 麻纤维内部分子绝大部分都和纤维轴平行,强力大;而棉纤维的大分子因呈螺旋形排列,其强力则较麻低;人造纤维的取向度随制造条件而改变,一般在同类纤维纺丝中,牵伸倍数愈大,分子取向度愈高。

       2、大分子聚合度:纤维的强度随纤维大分子聚合度的增加而增加,但当聚合度增加到一定值后,再继续增加时,纤维的强度就不再增加,这是由于纤维的断裂决定于大分子的相对滑移和分子链的断裂两个方面。 在聚合度较小时,纤维的断裂主要是由于大分子的滑移而引起,随着聚合度的增加,大分子间的抱合长度越长,大分子愈不易滑移,所以纤维的断裂强度就愈高。但当断裂强度达到了足以使分子链断裂时,再增加聚合度对纤维的强力就不起作用了。

       3、结晶度:纤维中大分子排列愈规整、缝隙孔洞较少且较小时,分子间结合力愈强,纤维的断裂强度、屈服应力和初始模量也都比较高,但脆性可能增加。

       4、测试试样的长度:试样越长,测得强度越低。纤维愈长,可能出现最薄弱环节的机会越多,所以强力越小,截面积均匀的人造纤维,其强度随试样长度而减低的程度较小。

       5、测试试样的根数:由束纤维试验所得的平均单纤维强力比单纤维试验时的强力为低,并且束纤维根数越多,差异越大。这是由于在束纤维中,各根纤维的强力,特别是断裂伸长率和原始伸长状态不一致,因此在外力的作用下,其中较伸直的、强力低的和断裂伸长率小的纤维必首先断裂,这样,其他纤维所受的力就会较这部分纤维断裂前增大,以至于提前断裂,所以最后由束纤维测得的强力必因这种断裂的不同时性而小于单根纤维测定时的纤维强力之和。

       6、拉伸速度:拉伸速度对纤维强力与变形的影响较大,拉伸速度大(即拉伸至断裂经历的时间短),纤维强力偏高;拉伸速度小,强力低。此外,拉伸过程的类型不同(例如应力等速增加型、拉伸力等速增加型、伸长率等速增加型、拉伸运动等速移动型、各种不等速型等),也会带来试验结果的差异。

       提高纤维强伸性能的途径:纺织纤维是高分子聚合物,制造高强度高模量纤维的方法,除了提高纤维大分子的相对分子质量(或聚合度)外,一般是采用提高分子链的取向度和改善结晶结构的方法。经验表明,适中的结晶度,且结晶颗粒小而均匀分布于无定形结构的纤维基体中的纺织纤维能表现出良好的机械性质。

纤维的回弹性

       纤维的变形恢复能力称为弹性,纤维的变形恢复能力,是指纤维承受负荷后产生变形,负荷除去后,纤维具有恢复原来尺寸和形状的能力。纤维弹性是纺织纤维的一项重要力学性质,全面衡量纤维的弹性应包括纤维的弹性模量、变形的恢复能力和断裂伸长等三方面的内容。纤维的弹性对纺织品的耐磨性、抗折皱性、手感、尺寸稳定性、耐冲击性能和耐疲劳性能等密切相关。纤维弹性回复性能的指标常用弹性回复率来表示。

       从分子水平上说,可回复的弹性变形是拉伸分子内或分子间结合键的作用,不可回复的塑性变形是由于结合键的断裂,在新位置上形成新的结合键。

       具有长链分子的纤维除了键长、键角的变形外,还有分子链的构象变化,机理比较复杂。当拉伸纤维时,分子链上主价键和链间的次价键都产生变形,并伴有部分次价键的断裂,当新的次价键重新形成时发生了能量的损耗和“应变硬化”现象。当外力除去以后,未断裂的次价键以及主链上的主价键有促使纤维回复原状的作用,但它将受到新形成的次价键的阻滞作用,变形的结果是除了产生急弹性形变和部分能回复的缓弹性形变外,还将留下不可回复的塑性形变。因为缓弹性和塑性形变是在外力场作用下通过链段运动达到的,所以纤维的变形及其弹性回复具有时间依赖性。

       纤维变形的时间依赖性,表现为纤维受力后发生的变形或释去外力后恢复的变形,总是随时间的增加而增加,而且不管是发生变形还是恢复变形,最后还总是会留下一部分不能恢复的变形。所以,可以把这种随时间而变化的变形分解为三个部分:

       (1)急弹性变形:来自纤维大分子中键角、键长的变化,瞬时发生,瞬时恢复。

       (2)缓弹性变形:来自外力作用下纤维大分子构象的变化,和基于这一变化的大分子重排。由于这个过程是通过克服分子间和分子内各种远近程次价键来实现的,所以过程缓慢,即使是去除外力,分子链为重新取得卷曲构象,变形恢复也需要很长的时间。如果在外力的作用下,一部分伸展的分子链之间曾形成新的次价力,那么在变形恢复的过程中,尚须切断这部分作用力,这样,变形的恢复时间将会更长。

       (3)塑性变形:来自外力作用下纤维大分子链之间不可逆的相对滑移。如分子间大部分原有氢键的断裂和在新位置上形成的新氢键;或者虽然只有部分氢链断裂,但在新位置上形成的氢键结合力大于要求恢复卷曲的回缩力,它们都能引起大分子间不可恢复的变形。

       三种变形同时发生,只是各自发生的速度不同:急弹性变形发生的速度很快;缓弹性变形则以比较缓慢的速度逐渐发生,并因分子间相互作用条件的不同而变化很大;塑性变形必须克服纤维中大分子之间更多的联系作用才能发生,因此比缓弹性变形更加缓慢。

       纤维三种变形的相对比例,随纤维的种类、加负荷的大小以及负荷作用时间的不同而不同。一般规定:去除负荷后5s(或30s)内能够恢复的变形,作为急弹性变形:去除负荷后2min(0.5h或更长时间)还不能恢复的变形,为塑性变形;在上述两种时间限值之间能够恢复的变形,即作为缓弹性变形。

       由于急弹性和缓弹性变形的相对大小不同,对纤维制品的性能影响是不同的。在低负荷 (或低伸长)时,总伸长中急弹性占主要部分,大部分纤维的急弹性伸长占总伸长的百分比保持不变,在屈服点与断裂点之间,急弹性变形所占的百分比随负荷的增加而减小,大部分纤维都是在屈服点附近,急弹性变形的降低比较大,以后逐渐减慢。塑性变形在屈服点处出现,至断裂负荷时,塑性变形的百分比增加达最大。

       影响纤维弹性回复性能的因素有纤维的结构、测试条件和温度、相对湿度。

       (1)纤维结构的影响:羊毛纤维弹性较好,是由于羊毛大分子链呈螺旋结构,并有二硫键的作用使分子链间组成交联网络,不易产生塑性流动。且羊毛纤维的结晶度低或呈准晶结构,断裂伸长比较大。如果纤维大分子间具有适当的结合点或交联点,结合点间的大分子链又有较大的局部流动性,则其弹性就好。局部流动性主要取决于大分子链的柔曲性,适当的结合点取决于结晶度和极性基团的情况。如涤纶和锦纶纤维的分子链柔曲性较好,具有较好的弹性。纤维素纤维如棉、麻、粘胶的分子链刚性较大,回弹性较差。由硬链段和软链段嵌段共聚而成的聚氨基甲酸酯纤维(氨纶)类似于带有微晶结合点的橡胶,其弹性非常优良。就回弹性而言,玻璃纤维要优于羊毛、涤纶和锦纶,但其中绝大部分为急弹性形变,因其断裂伸长率低 (3%左右),所以也感觉不到玻璃纤维具有优良的弹性。因此,按日常所说,纤维的回弹性好应包含纤维的弹性回复率高和断裂伸长率大两项内容。

       (2)测试条件的影响:在其他条件相同时,当初始拉伸应力或伸长率较大时,测得的纤维弹性回复率较小。如负荷的停顿时间较长时,纤维的总变形量较大,塑性变形也有充分的时间发展,测得的弹性回复率就较小。去负荷后停顿时间较长时,缓弹性变形恢复得较充分,因而测得的弹性回复率就较大。

       (3)温度和相对湿度的影响:相对湿度和温度对纤维弹性回复半的影响较为复杂。纤维的弹性回复率随着温、湿度的升高或降低的变化规率是不一致的。

纤维的断裂与疲劳破坏

       纤维在其制品(如纱线、绳索、绳网、织带、织物等)中的破坏形式有一次拉断、冲击破坏、反复负荷作用下的动态疲劳破坏和静载荷作用的蠕变破坏 (亦称静态疲劳)等多种形式,破坏机理亦不尽相同。有时,纤维经过一定外力作用后虽然没有断裂,但其力学性质会产生较大改变或变化,这也可以看作是对纤维的一种破坏。

       一定取向度的高聚物的断裂可能存在两种不同的机理,即分子链的断裂和分子链的滑移。

       第一机理的理论强度计算一般是以分子和原子间的最大内聚力和单位面积的键数为依据的。计算最大内聚力的一种近似方法是根据成键原子的键能值。这个键能可近似地看作是克服成键的两个原子相互吸引的力,将其推移到键长的距离所作的功。

        按第二机理,如果高聚物的断裂是由于分子链的滑移所造成的话,那么对线型高聚物必须克服分子链间所有的氢键和范德华力,这比共价键能大好几倍,所以,这一机理是不可能的。

       普通纤维的实际强力都比理论强力要低得多,这是由于纤维聚集态结构不可能是理想的完全伸直取向的结晶结构。归纳起来,主要有以下两个原因:

       ①纤维中分子链间受力不均匀而产生的断裂不同时性。 对具有两相结构的纤维,由于大分子链能连续穿过2个以上的结晶区,纤维呈网络结构,结晶颗粒相当于网络的结点,纤维的强力和伸长主要决定于无定形区。在两结晶区之间(即无定形区中)的分子链分成两类,一类是穿过两结晶部分的“缚结分子”,并且其长度是不均一的,有伸直的,有不同程度卷曲的,分子链的长度形成一个分布;另一类是被结晶区握持的分子链的头端,伸出在无定形区形成 “自由端”。如果略去分子链间的次价键力(假设纤维吸水后),这样纤维的张力主要是缚结分子的断裂作贡献,随着纤维逐渐伸长,受力分子链数目增多,纤维张力上升;当纤维伸长超过“缚结分子”链长度后,纤维张力下降。 此外,由于分子链有不同程度的取向和应力集中等影响,所以实际纤维强力还需要进一步修正。并且在纤维伸长时分子链“自由端”相互滑移须克服次价键力对纤维强力也作贡献,这就说明了为什么实际纤维强度远低于理想纤维的理论强度的原因。

       ②纤维结构的缺陷、孔洞和裂缝等原因引起的应力集中效应。 日常经验告诉我们,有裂缝的材料极易裂开。应力集中随裂缝尖端处半径的减小和裂缝长度的增加而增大。当裂缝尖端处应力达到和超过材料中分子或原子的最大内聚力时,材料会产生破坏。

       疲劳破坏是指纤维在远低于断裂应力或断裂应变的条件下,经受反复施力而破坏。疲劳的受力形式就是不断的“加载荷”和不断的“去载荷”,即不断接受高变应力(应变)的作用。

       纤维制品在实际使用中很少是被一次拉断,而往往是在长时期的静载荷或动载荷作用下产生破坏的。尽管静载荷或动载荷小于材料一次拉伸的断裂强度,但材料最终将被破坏,或力学性质改变,这种现象称为材料的疲劳。

       在动态交变应力作用下,材料达到疲劳破坏的次数随着交变应力振幅或最大应力值的增加而减少,当最大应力小到一定程度,材料就不会被破坏,这一临界应力称为疲劳极限。疲劳极限的大小,因材料不同而异,还与材料结构有关,很多高聚物材料的疲劳极限是在静态拉伸强度的20%-40%之间。

       高聚物的疲劳破坏过程是由于次价键的断裂和分子链的互相滑移,本质上是粘性流动过程。随着温度、应力振幅和振动频率的增加,疲劳寿命(时间)会降低。对疲劳破坏机理的研究认为,材料疲劳破坏有下述两个原因:

       ①纤维内部存在着结构缺陷,即存在微观裂缝和孔洞,由于应力集中的影响,根据格里菲斯理论,当裂缝长度增长到临界值时,材料就会产生突然断裂。

       ②纤维材料的力学衰减与疲劳性能关系密切。当材料的正切损耗较大时,在疲劳过程中,材料发热量增大,温度升高,使材料性能下降,疲劳寿命缩短。

       由经验和分析表明,纤维的疲劳性质与静态力学性质间有密切关系,当纤维具有较好的回弹性,断裂功和断裂伸长率均较大时,其疲劳性能也较好。疲劳过程中,每次负荷作功越小,纤维寿命越长,因此,要使纺织品经久耐用,除了要求纤维有一定内在质量外,合理使用亦很为重要。

       另外,疲劳破坏过程也可以看作是一个塑性变形逐步累积,最后达到纤维断裂伸长率使纤维最终破坏的过程。如果纤维有较优的弹性回复率,每次负荷产生的伸长与卸去负荷时的伸长回复相等,则纤维的伸长不可能进一步累积达到其断裂伸长而破坏,疲劳寿命即为无穷大,相当于纤维在疲劳极限以下的工作状态。众所周知,外应力或应变超过纤维的屈服点,容易产生塑性变形,回弹性差,所以屈服应力高的材料,疲劳性能较好。有人认为,纤维强力和模量与疲劳寿命没有直接关系。

       当纤维受到多次循环负荷或一次拉伸外力作用产生一定塑性变形后,纤维虽然没有断裂,由于纤维内部分子链的重排产生结构的变化,其力学性能将产生很多变化或损伤。经受多次负荷处理的过程也叫做“机械处理” (Mechanical Conditioning)。纤维经受一次较大(超过屈服点)的拉伸变形后,其力学性能发生了许多变化:屈服点提高,断裂伸长率和断裂功降低,弹性回复率增加,初始模量和断裂强度可以保持不变或者增加,或者减小。

       表征纤维疲劳特性的指标是耐久度或坚牢度,即指纤维能承受 “加负荷、去负荷”反复循环的次数。纤维的坚牢度与纤维的弹性回复率、屈服应力和断裂强度有一定关系。弹性回复率、屈服应力和断裂强度大和剩余变形小的纤维,坚牢度就大;所加负荷小和加负荷时间短的,坚牢度也大;去负荷时间长时坚牢度也大。

纤维的其他力学性质

       1、冲击性能

       在许多场合,纺织制品承受着高速率负荷或应变的作用。当冲击速度很大时,与低速拉伸纤维或纱线的线型结构材料不同,应力应变在试样中不再是均匀分布的。如在纵向高速冲击过程中的某一瞬时,试样中某一点的应变可以很大,然而在试样的另一端却还没有产生变形。当速度达到一定值时,能使材料发生冲击断裂。当飞弹横向冲击纱线时,纱线形成“V”形状,V形段沿着未弯曲纱线在两个横方向沿纱线向外扩展,这种横向运动的横波将以一定速度传递,但总是低于伴随产生的应变的传递。横向冲击速度越大,横波的速度就越小。推广到面型结构(织物或平板)材料,当子弹穿透速度越大横波传递速度越小,破裂的影响面也越小。

       在高速冲击负荷作用下,所得到的材料应力-应变曲线与低速拉伸条件下得到的应力-应变曲线相比较,虽然只是断裂时间上的差别,但由于纺织纤维的粘弹性性能,所得实验结果是完全不同的。随着应变速率增加,纤维的断裂强度、屈服应力和初始模量增加,断裂伸长率随纤维不同而不同,无一定规律。聚乙烯、锦纶和等规聚丙烯纤维在高应变率时出现脆性断裂,而醋酯纤维、粘胶和腈纶纤维则表现出相当的塑性而不脆断。

       2、纤维的弯曲、扭转和压缩性能

       (1)纤维弯曲:纤维在纺织加工或在纺织制品使用过程中都会受到弯曲变形,纤维的弯曲刚度是影响纱线或织物弯曲刚度的重要因素,织物的手感与纤维的弯曲刚度有密切关系。当把纤维的弯曲刚度折合成相同线密度时的弯曲刚度,称为相对弯曲刚度。各种纺织纤维的相对弯曲刚度的差异较大。羊毛和锦纶的较小,苎麻、亚麻、涤纶则较大。织物的挺爽、软糯及其身骨与纤维的相对弯曲刚度有密切关系。相对弯曲刚度大的纤维制成的织物比较挺爽,相对弯曲刚度小的纤维制成的织物柔软贴身,软糯舒适,但容易起球。

       纤维弯曲变形时,中性面以上受拉伸,中性面以下受压缩。当中性面以上最外层部分的伸长率达到纤维断裂伸长率时,纤维开始被弯曲破坏。通常在纤维(或纱线)互相钩接或打结的纺织制品中容易产生这种弯曲破坏。为了反映这方面的性能,许多纤维需进行钩接强度或打结强度试验。纤维的钩接强度和打结强度总是小于纤维拉伸断裂强度的,基本上断裂伸长率最低的纤维,其钩接强度和打结强度也低。

       (2)纤维的扭转:纺织品在加工和使用过程中会产生各种扭转变形,纤维的扭转刚度是表征纤维抵抗扭转变形的能力。由于纤维粗细不同,为了相互比较,常采用相对扭转刚度,它是表示相当于1tex粗细纤维的扭转刚度。

       纤维受扭转变形时,随着扭转变形的增大,纤维中的剪切应力增大,易造成结晶区破碎和非结晶区中大分子链的断裂,当剪应力达到纤维剪切强度时,便发生破坏。常用断裂捻角(纤维被扭转到断裂时的螺旋角)来表示纤维的抗扭破坏能力。

简述纺织纤维的四大特征

1、纺织纤维具有一定的长度、细度、弹性、强力等良好物理性能。

2、还具有较好的化学稳定性,例如:棉花、毛、丝、麻等天然纤维是理想的纺织纤维。

3、纤维是指直径为几微米到几十微米,而长度比直径大千倍以上且猜唤具有一定柔韧性和强力的纤细物质。

4、环境条件对纤维的影响各有不同。纤维及最终的织物对暴光、贮存等如何反应是非常重要的。

鉴别的方法有手感、目测法、燃烧法、显微镜法、溶解法、药品着色法以及红外光谱法等。在实际鉴别时,常常需要用多种方法,综合分析和研究以后得出结果。

扩展资料

感官鉴别法

这种方法是通过人的感觉器官来测试织物的弹性、柔软感和褶皱情况。如眼观织物质地、光泽,手摸织物的质感、厚薄等。通过观察织物纤维的色泽、长度、粗细、变曲程度等,用以判断纤维的种类。

使用该方法,往往根据人的主观判断,有时难做恰如其穗棚凯分的表达,而且织物的手感与纤维原料、纱线的品种、织物的薄厚、组织结构、染整工艺等因素都有密切关系,因而要求测试者必须熟练掌握各种织物的外观特征,同时还要掌握各类纤维的感官特点。

该方法虽然简便,但是需要丰富的实践经验,且不能鉴别化纤中的具体品种,因而具和宽有一定的局限性。

参考资料来源:百度百科-纺织纤维

纺织纤维的性能有哪些

常见纺织纤维的纺织性能:

① 羊毛早巧:吸湿、弹性、服用性能均好,不耐虫蛀、适酸性和金属结合染料。

② 蚕丝:吸湿、透气、光泽和服用性能好,适用酸性及直接染料。

③ 棉花:透气、吸湿、服用性能好、耐虫蛀、适直接还原偶氮、碱性媒介、硫化、活性染料。

④ 黏胶纤维: 吸湿性、透气性好、颜色鲜艳、原料来源广、成本低,性质接近天然纤维,适用染料同棉花。

⑤ 涤纶:织物、挺、爽、保形性好、耐磨、尺寸稳定、易洗快干,适用分散染料,重氮分散染丛御料、可溶性还原染料。

⑥ 锦纶:耐磨性特别好、透气性差陆郑键、适用酸性染料,散染料。

⑦ 晴纶:蓬松性好、有皮毛感、适用分散染料,阳离子染料。

服装材料学:纤维

       纤维是组成服装材料的基本元素,是服装各种服用性能的根基。纤维是指直径在数微米到数十微米,长度比直径大许多倍甚至上千倍的细长物质,但并不是所有的纤维都可以用作纺织纤维,纺织纤维是指长度在数十毫米以上,具有一定的强度、一定的可挠曲性和其他服用性能的纤细物质。

 纤维的主要性能指标

       1、物理性能指标:长度,细度,比重,光泽,吸湿性,热性能,电性能,卷曲度。

       2、稳定性能指标:高温和低温的稳定性,对光-大气的稳定性,化学试剂的稳定性,微生物作用的稳定性。

       3、机械性能指标(力学性能指标):断裂强度,初始模量,回弹性,断裂伸长,耐多次变形性。

       4、加工性能指标:抱合性,起静电性,染色性。

服装用纤维原料的基本属性

       用作服装原料的纤维,必须具备一定的条件,才能符合纺织加工和服用的要求。一般纺织纤维具有如下性质:

       1、具有一定的长度和细度。长度须在几十毫米以上,而细度则要求在一定的粗细范围内。

       2、具有一定的强度和可挠性。强度是指纤维是否结实,是否容易被拉断,代表着纤维的耐用性,一般可用断裂强度表示。可挠性表示纤维抵抗弯曲变形的能力,可反映纤维的弹性、柔韧性和延伸性,是纤维最重要的性质之一。

       3、具有一定的化学稳定性。纤维应对热稳定,对酸、碱、氧化剂等化学物质有一定的耐受和抵抗能力。

       4、具有良好的染色性能。在一定的条件下,能和染料分子结合且具有一定的色牢度。

       5、具有一定的服用性能。纤维除结实耐用外,还应使服装满足人体生理上的需要,如隔热保温、吸湿透气、伸缩变形等,以达到服装穿着舒适的目的。

       6、具有一定的耐气候性能。大气中的各种物质的作用会影响纤维制品的颜色和光泽,作为纺织用纤维必须具有一定的抵抗这些外界作用的能力。

服装用纤维原料的分类

       根据纤维的来源,服装用纤维原料可分为天然纤维和化学纤维俩大类。

       1、天然纤维:天然纤维是自然界存在的、可以直接获得的纤维。天然纤维又可分为植物纤维、动物纤维和矿物纤维三种。

       (1)植物纤维:植物纤维又称天然纤维素纤维,是由植物上种籽、果实、茎、叶等处获得的纤维。它包括种子纤维、韧皮纤维和叶纤维等。

       A、种子纤维:如棉、木棉等

       B、韧皮纤维:如苎麻、亚麻、黄麻、槿麻、罗布麻等

       C、叶纤维:如剑麻、蕉麻等。

       (2)动物纤维 :动物纤维又称天然蛋白质纤维,是由动物的毛发或昆虫的腺分泌物中取得的纤维。它包括毛发类和腺分泌物类。

       A、毛发类:指羊毛、山羊绒、驼毛、兔毛、牦牛绒等

       B、腺分泌物类:指桑蚕丝、柞蚕丝、蓖麻蚕丝、木薯蚕丝等。

       (3)矿物纤维:矿物纤维又称天然无机纤维,是由矿物中提取的纤维。主要包括各类石棉。

       2、化学纤维:化学纤维是指由人工加工制造成的纤维状物体,化学纤维又可分为人造纤维和合成纤维两大类。

       (1)人造纤维:人造纤维也称再生纤维,是由天然聚合物或失去纺织加工价值的纤维原料制成的纤维。包括人造纤维素纤维、人造蛋白质纤维、人造无机纤维和人造有机纤维。

       A、人造纤维素纤维:指粘胶纤维、铜氨纤维、醋酯纤维、竹粘纤维等。

       B、人造蛋白质纤维:指大豆纤维、花生纤维、蛹蛋白纤维、牛奶丝纤维等。

       C、人造无机纤维:指玻璃纤维、金属纤维厅腔、碳纤维等。

       D、人造有机纤维:指甲壳素(蟹壳键消)纤维、海藻胶纤维等。

       (2)合成纤维 :合成纤维占化学纤维的绝大部分,是由天然小分子化合物经人工合成有机聚合物后而制得的纤维。包括聚酯纤维、聚酰胺纤维、聚丙烯腈纤维等多种品种。

       A、聚酯纤维:指涤纶纤维,也称作达可纶、特丽纶、帝特纶等。

       B、聚酰胺纤维:指锦纶纤维,也称为尼龙、耐纶、卡普隆等。

       C、聚丙烯腈纤维:指腈纶纤维,也称为奥纶、开司米纶、爱克斯纶等。

       D、聚乙烯醇纤维:指维纶纤维,也称作维尼纶、妙纶等。

       E、聚氯乙烯纤维:指氯纶纤维,也称作天美纶、滇纶等。

     扮亮衫  F、聚丙烯纤维:指丙纶纤维,也称其为帕纶。

       G、聚氨基甲酸酯纤维:指氨纶纤维,也称弹性纤维、司潘德克斯纤维等。

       H、其它纤维:包括芳纶1414、氟纶、碳纤维等。

服装用纤维原料的形态结构特征

       纤维的形态结构特征是指在光学显微镜或电子显微镜下所观察到的纤维的断面形状、纵向特征结构。由于不同纤维的纵横形态各不相同常可用来鉴别各类纤维。

       影响纤维服用性的形态结构特征有纤维的长度、细度和横断面、纵截面形状及纤维内部存在的各种缝隙和孔洞。

       1、纤维的长度:对织物的外观和纱线的质量及织物的手感有影响。

       2、纤维的细度:衡量纤维品质的重要指标,纤维越细,手感越柔软。

       3、纤维断面形态:对织物的光泽、扰度和弹性有影响。

       纤维属于高分子化合物,是由成千上万个原子组成的大分子。纤维大分子在纤维内一般呈直线状的长链,故也常将纤维分子结构称为链结构。在纤维的长链分子中,一般会有一种或几种重复出现的链节,表明长链分子是由许多化学结构相同或不完全相同的单个小分子依靠共价键联结而成的具有一定聚合度的大分子,其中聚合度是指链节的数量。这些链节结构决定了纤维的性能。

       组成纤维的高分子化合物形成纤维的结构特征,影响纤维的物理和化学性质及其排列。其中高分子化合物的种类决定了纤维的耐酸碱、染色燃烧等化学性质;高分子化合物的亲水基团的多少和强弱影响纤维的吸水性;高分子化合物的分子极性的强弱影响纤维的电学性质;高分子化合物的聚合度与纤维的力学性质极为密切;高分子化合物的结晶度的大小对吸湿能力、染色性、比重、透气性、力学性质有影响。

       一根纤维是由许多长链分子组成的,而每条长链分子所含有的原子团、空间的几何形状及长短却有差异,不完全相同,因此这些长链大分子在纤维内的排列不可能完全平行,表现出无一定的规律性,长链分子依靠分子间的相互作用力(分子引力、氢键、盐式键、化学键)聚集结合,排列堆砌成整根纤维。因此纤维结构不会堆砌得十分密实,在纤维内部存在许多不同尺寸的缝隙和孔洞。这就是为什么纤维具有吸湿和通气性的原因。

       1、棉纤维的形态结构:棉纤维是棉花成熟后去籽而得到的。一般有长绒棉、细绒棉、粗绒棉和草棉四种。将棉纤维放在显微镜下观察,可见纵向形态呈扁平带状,表面有扭绞的天然转曲;横截面形态呈腰圆形,中间有中腔。中腔的大小表示棉纤维品质的好坏,中腔小说明棉纤维较成熟,品质较好。 棉纤维的服用性能:

       (1)色泽:白色或乳白色、淡黄色,光泽较差。丝光、压光、漂白或荧光增白可改善。

       (2)染色:染色性能好,可染成各种颜色。

       (3)强度和伸长:棉纤维强度较高,湿强大于干强,变形能力差,断裂伸长率为3%-7%。

       (4)吸湿性:棉纤维具有较强的吸湿能力(亲水基团),吸水后,变粗变短,需预缩。

       (5)弹性:弹性较差,易起皱,洗后需熨烫处理。

       (6)舒适性:透气性好(吸湿和芯吸效应),不易起静电。

       (7)耐磨性:耐磨性一般,不耐穿,但耐水洗。

       (8)保暖性:是热的不良导体,且中腔有不流动的空气,保暖性较好。

       (9)可塑性:棉纤维在105度时,可任意改变形状。

       (10)耐碱性:棉纤维有较好的耐碱性,稀碱在常温下不影响棉的强度。

       (11)耐酸型:棉纤维耐酸性较差。

       (12)易霉变:微生物和霉菌对棉有破坏作用,应清洗防潮。

       (13)耐热性:棉织物的熨烫温度可达190度左右。

       2、麻纤维的形态结构:麻纤维属草本植物,是从麻茎的韧皮中取得的纤维。麻纤维的种类很多,最常用于服装面料的麻纤维只有苎麻和亚麻。这两种麻纤维在显微镜下观察会发现它们的形态结构有所不同。

       (1)苎麻纤维:纵向形态表面有横节和竖纹;横截面形状呈腰圆形,有中腔。截面上呈现大小不等的裂缝纹。

       (2)亚麻纤维:纵向形态同苎麻;横截面形状呈多角形,有较小的中腔。

        麻纤维的服用性能:

       (1)色泽:多为象牙色,另有棕黄和灰色。不易染色,且有色差,光泽与整理有关。

       (2)强度和伸长:具有较高的强度,居天然纤维之首,是羊毛的4倍,棉的2倍;湿强高于干强,伸长率低,是天然纤维之末。

       (3)吸湿性:具有良好的吸湿性和散湿性,凉爽舒适;但缩水率大,易改变尺寸。

       (4)导热性:导热速度快,穿着凉爽,不贴身。

       (5)弹性:较差,易皱;延展性差,脆、硬,易断。

        (6)化学性能:耐碱不耐酸,耐碱比棉差,耐酸比棉强。

       (7)抗菌防霉:对多种病菌和霉菌有抑制作用,有抗菌防霉和除臭的功能。

       (8)易洗去污:水洗柔软,污垢易清除。

       (9)耐热性:较好,熨烫温度可达200度。

       3、毛纤维的形态结构:毛纤维是从动物身上获取的纤维。毛纤维根据其来源不同可分为许多品种,如羊毛、羊绒、兔毛、牦牛毛等,其中以绵羊毛最为常用。

       羊毛在显微镜下观察,毛纤维纵向形态沿羊毛表面覆盖有鳞片层,头端指向羊毛的梢部。鳞片覆盖形态随毛纤维种类而不同,分为环状覆盖、瓦状覆盖和龟裂状覆盖三种;毛纤维横截面形状呈大小不等的圆形,有些有断续的毛髓层(一般在粗毛中),毛髓层可减弱羊毛的强力。 羊毛纤维的服用性能:

       (1)羊毛纤维的缩绒性:指羊毛纤维的集合体在一定的湿热条件下,经机械外力的反复挤压,逐渐收缩紧密、并互相穿插纠缠、交编毡化的现象。缩绒性是毛纤维所特有的。

       产生缩绒的原因:羊毛的定向摩擦效应、优良的弹性、稳定的卷曲是羊毛缩绒的内在原因,较细的羊毛,鳞片密度大,卷曲正常,弹性好,定向摩擦效应大,缩绒性好。温湿度、化学试剂和外力的作用是促进羊毛缩绒的外在原因。

       缩绒性对羊毛产品的影响:利用缩绒性,可以把松散的短毛纤维结合成具有一定机械强度、形状、密度的毛毡片,这一作用称为毡合。

       利用羊毛的缩绒性,在粗纺毛织物的整理中,经过缩绒工艺(又称缩呢),织物的长度缩短、厚度和紧度增加,织纹不露底,表面被一层绒毛所覆盖,手感丰厚柔软,保暖性好,具有独特风格。 另一方面,羊毛的缩绒性使毛织物和羊毛针织品在穿用过程中容易产生尺寸收缩和变形,产生起毛起球等现象,影响了穿用的舒适性和美观性。

       因此,大多数精纺毛织品、绒线、针织物在整理过程中都要经过防缩绒处理。生产上通常采用破坏鳞片层的方法来达到防缩绒的目的。

       (2)羊毛纤维的强伸性:羊毛纤维的拉伸强度是天然纤维中最低的,其断裂长度只有9~18km;而其在外力作用下的伸长能力是天然纤维中最大的,断裂伸长率干态可达25%~35%,湿态可达25%~50%,并且具有优良的弹性回复能力。手感柔软。

       (3)色泽:奶油色、棕色或黑色,易染色。

       (4)吸湿性:纺织纤维中吸湿性最好的,公定回潮率15~17%,极限吸湿率可达40%,有一定的蓄水能力,且吸湿防热。

       (5)耐酸碱性:耐酸性好(抗80%硫酸),耐碱性较差(5%氢氧化钠煮沸10分钟即溶解)。

       (6)耐光性:较差,可发黄,强力下降。

       (7)保暖性:较好。卷曲有静止空气。

       (8)耐热性:较差,熨烫温度为160~180度。

       (9)耐微生物:易受虫蛀,易霉变。

       4、蚕丝的形态结构:蚕丝是由蚕结茧吐丝而成的腺分泌物。与前述几种纤维不同,蚕丝为长纤维,每根纤维长度500~1000m不等,纤维较细。蚕丝在显微镜下观察,很容易与其它纤维进行区别。 纵向形态由两根单丝并合而成,如树干状,粗细不匀,且有许多异状的节,即各种疵点;横截面形状呈半椭圆形或成三角形,且总是成对出现。 蚕丝的服用性能:

       (1)长度:从蚕茧上缫取的茧丝长度很长,经缫丝数根合并后的生丝不需要纺纱即可织造。

       (2)细度:蚕丝的细度按国家标准规定应该用特克斯来表示,但目前仍习惯以纤度表示。纤度是指9000m长的蚕丝的公定重量支数。

       (3)强度和伸长率:蚕丝的强度比羊毛大3倍,断裂伸长率略低于羊毛。

       (4)吸湿性:蚕丝的吸湿能力较强,在一般大气条件下回潮率可达9%--13%。

       (5)蚕丝的触感和光泽:蚕丝纤维平滑而富有弹性,因此具有优良的触感。蚕丝还具有其它纤维所不能比拟的优雅而美丽的光泽,这种特殊的光泽主要是丝素的三角形截面以及茧丝的层状结构所形成的。

       (6)蚕丝的化学性质:蚕丝是两性化合物,即在一定条件下既能和酸作用又能和碱作用。蚕丝对酸的抵抗能力优于对碱的抵抗能力。

       (7)丝鸣:生丝精练后,置于酸性溶液中处理一下,放在一起用力摩擦时,即会产生一种悦耳的声响,称为丝鸣。丝鸣对鉴别真丝绸和仿丝绸具有一定的参考价值。

       5、化学纤维的形态结构:化学纤维在生产过程中可由人工加以控制,因而其长短、粗细可按照需要进行选定。一般化学纤维分为长丝和短纤维两种,其截面形态多为圆形,而纵向光滑平整。但粘胶纤维是个例外,其截面形态为锯齿形,这与纤维生产过程中凝固时的收缩有关。当然为了改善服装面料的外观和性能,近年来又开发了许多异形纤维,即横截面不是圆形的化学纤维,因此在观察时要注意加以区别。 常用化学纤维的特性如下:

       A、粘胶纤维的主要特征:

       (1)普通粘胶纤维的截面为锯齿且有皮芯结构,纵向平直有沟槽.

       (2)强度小于棉,断裂伸长率大于棉。吸湿后强度明显下降,湿强只有干强的50%左右。

       (3)耐磨性较差,吸湿后耐磨性更差。

       (4)小负荷下容易变形,尺寸稳定性较差。

       (5)吸湿能力优于棉,在一般大气条件下回潮率可达13%左右。

       (6)耐热性和热稳定性较好。

       (7)染色性能良好,染色色谱全,能染出鲜艳的颜色。

       (8)较耐碱而不耐酸。

       B、涤纶纤维的基本特征:

       (1)涤纶为熔体纺丝,故常见纤维的截面为圆形,纵向为圆棒状.

       (2)涤纶的拉伸断裂强力和拉伸断裂伸长率都较高,可将纤维分为高强低伸型、中强中伸型和低强高伸型。

       (3)涤纶在小负荷下不易变形,即初始模量高,在常见纤维中仅次于麻纤维。涤纶的弹性优良。因此织物的尺寸稳定性好,挺括抗皱。

       (4)吸湿性差,在一般大气条件下回潮率只有0.4%左右。

       (5)染色性较差,多采用分散染料进行高温高压染色。

       (6)有很好的耐热性和热稳定性。但涤纶织物遇火种易产生熔孔。

       C、锦纶纤维的主要特征:

       (1)为熔体纺丝纤维。截面、纵面形态与涤纶相似。

       (2)吸湿能力是常见合成纤维中较好的,在一般大气条件下回潮率可达4.5%左右,有些品种如锦纶4可达7%。

       (3)耐磨性是常见纺织纤维中最好的。

       (4)小负荷下容易变形,所以织物保形性和硬挺性不及涤纶织物。

       (5)耐热、耐晒性较差,晒后发黄发脆。遇火种会熔成小孔。

       (6)染色性能好,色谱较全。

       D、腈纶纤维的主要特征:

       (1)为湿法纺丝纤维。截面为圆形或哑铃形,纵面平滑或有1-2根沟槽 .

       (2)吸湿能力比涤纶好,比锦纶差,在一般大气条件下回潮率为2%左右。

       (3)强度比涤纶、锦纶低,断裂伸长率则与涤纶、锦纶相似,弹性较差些。

       (4)耐磨性是合成纤维中最差的。

       (5)耐日晒性特别优良,在常见纺织纤维中居首位。

       (6)具有特殊的热收缩性,可将普通腈纶再一次热位伸后骤冷,得到的纤维如果在松弛状态下受到高温处理会发生大幅度回缩。

       E、氨纶纤维主要特性:

       (1)聚酯型弹性纤维截面呈蚕豆状,聚醚型弹性纤维截面呈三角形。

       (2)吸湿性较差,在一般大气条件下回潮率为0.8%-1%左右.

       (3)强度比橡胶丝高2-3倍,但与纺织纤维相比,则强度很低,是常见纺织纤维中强度最低的。

       (4)具有高伸长,高弹性。其断裂伸长率可达480%-700%,且在断裂伸长以内的弹性恢复率在95%-98%。

       (5)有较好的耐酸、耐碱、耐光、耐磨等性质。

服装用纤维原料的鉴别

       要精确标识服装材料的成分,就必须对组成服装材料的纤维原料进行鉴别。通常通过对纤维的显微结构、外观形态、化学与物理性能上的差别来进行鉴别,常用的鉴别方法有以下几种:

       1、手感目测法 鉴别依据:根据纤维外观形态、色泽、手感、伸长、强度等特征来加以识别。(如: 棉、麻、毛短纤维,棉最短而细、有杂质和疵点;麻手感较粗硬;毛卷曲而有弹性;丝长而细且有光泽;粘胶干湿强度差别大;氨纶弹性大等。) 适用于:呈散纤维状态的原料。 缺点:具有局限性。

       2、燃烧法 鉴别依据:纤维化学组成不同,燃烧特性不同。 鉴别方法:将试样慢慢接近火焰,观察在火焰热带中的反应、在火中的燃烧、离开火焰延烧情况及产生的气味和灰烬。

       3、显微镜观察法 鉴别依据:纤维的外观形态、纵面、截面形态特征。 鉴别仪器:生物显微镜或电子显微镜。 适用于:纯纺、混纺和交织产品。

       4、溶解法 鉴别依据:根据各种纤维的化学组成不同,在各种化学溶液中的溶解性能各异的原理。 适用于:各种纤维和产品。包括已染色的和混合成分的纤维、纱线和织物。

        5、药品着色法 鉴别依据:根据各种纤维的化学组成不同,对各种化学药品有不同的着色性能。 适用于:未染色或未经整理剂处理过的单一成分的纤维、纱线或织物。

       6、熔点法 鉴别依据:根据某些合成纤维的熔融特性,在化纤熔点仪或附有加热和测温装置的偏振光显微镜下观察纤维消光时的温度来测定纤维的熔点。

       7、红外吸收光谱鉴别法 鉴别依据:根据纤维分子的各种化学基团,不论它存在于哪一种化合物都有自己的特定的红外吸收带的位置,利用此原理将测得试样的红外光谱图与已知纤维的红外光谱图核对比较。 8、密度法 鉴定依据:各种纤维具有不同密度的特点。 9、荧光法 鉴定依据:利用紫外线荧光灯照射纤维,根据各种纤维光致发光的性质不同,纤维的荧光颜色也不同的特点。 适用于:荧光颜色差异大的纤维。

纺织纤维的特征有哪些?

纺织纤维一般是指直径几微米或几十微米,长度比直径大许多倍,可用悔枯来加工制造纺织品的碧旦洞物体,以细而长为特征。纺织纤维具有一定的细度和长度,才能使纤维迟搏间相互抱合,并依赖纤维之间的摩擦力纺制成纱。

纺织纤维一般有哪些种类

纺织纤维分类:天然纤维和化学纤维。

1、天然纤维包纳蠢括植物纤维、动物纤维和矿物纤维。

植物纤维:如:棉花、麻、果实纤维。

动物纤维:如:羊毛、兔毛、蚕丝。

矿物纤维:如:石棉。

2、化学纤维包括再生纤维、合成纤维和无机纤维。

再生纤维:如:黏胶纤维、醋酯纤维。

合成纤维:如:锦纶、涤纶、腈纶、氨纶、维纶、丙纶、氯纶。

无机纤维:如:玻璃纤维、金属纤维等。

扩展资料

常见纺织纤维的纺织性能:

1、羊毛:吸湿、弹性、服用性能均好,不耐虫蛀、适酸性和金属结合染料。

2、蚕丝:吸湿、透气、光泽和服用性能好,适用酸性及直穗态接染料。

3、棉花:透气、吸湿、服用性能好、耐虫蛀、适直接、还原、偶氮、碱性媒介、硫化、活性染料。

4、黏胶纤维:吸湿性、透气性好、颜色鲜艳、原料来源广、洞族陪成本低,性质接近天然纤维,适用染料同棉花。

5、涤纶:织物、挺、爽、保形性好、耐磨、尺寸稳定、易洗快干,适用分散染料,重氮分散染料、可溶性还原染料。

6、锦纶:耐磨性特别好、透气性差,适用酸性染料、散染料。

7、腈纶:蓬松性好、有皮毛感,适用分散染料、阳离子染料。

8、维纶:吸湿性最好,通常用于绳索、渔网等。

9、丙纶:质地最轻,耐磨、耐穿、不起球。

10、氯纶:不易燃烧,常用作针织内衣、毛绒、工业滤布、工作服等。

11、氨纶:弹性最高,高伸长、高弹性,常用作紧身用品,但不着色,强力最低。

参考资料来源:百度百科-纺织纤维

关于纺织纤维有哪些性质和纺织纤维具有哪些性质的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签: 纺织纤维有哪些性质,

已有3位网友发表了看法:

头像
1L凝眉 2023-04-13 15:33:32 回复
好听的故事没有结局,真挚的友情不用言语,惦念的朋友才有短信,祝福的电波不会休息,美好的向往没有距离,问候的短信祝福你:虎年快乐顺利,幸福无限!19
头像
2L靖易 2023-04-13 18:29:14 回复
遍地鲜花灿烂,天空彩旗鲜艳,火红的事业今日起,财源广进无终日;温馨祝愿来到,繁荣昌隆相随,真诚的祝福今日起,带动着商机永无限!祝君生意兴隆,财源滚滚!31
头像
3L涵柳 2023-04-13 16:50:21 回复
一个成功的竞争者应该经得起风雨,应该具有抗挫折的能力纺织纤维有哪些性质(纺织纤维具有哪些性质)

发表评论

必填

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。